
4. Analysis.  It is highly desirable  if some important properties about  the be- havior of the system can 

be determined before the system is actually  built. This  will allow the designers  to  consider  

alternatives and  select  the  one that will best  suit  the  needs.  Many  engineering  disciplines  use 

models to analyze design of a product for its cost, reliability, performance,  etc. Archi- tecture opens 

such possibilities  for software also. 

Not all of these uses may be significant in a project  and which of these uses is pertinent to a project  

depends on the nature of the project.  In some projects communication may  be very  important, but  a 

detailed  performance  analysis may be unnecessary  (because the system is too small or is meant for only 

a few users). In some other systems, performance  analysis may be the primary  use of architecture. 

Architecture Views 

 

There  is a  general  view emerging  that there is no  unique  architecture of a system.  The definition  

that we have adopted (given above)  also expresses this sentiment. Consequently, there  is no one 

architecture drawing  of the  system. The  situation is similar  to  that of civil construction, a discipline  

that is the original  user  of the  concept  of architecture and  from  where  the  concept of software  

architecture has  been  borrowed.  For  a building,  if you  want  to see the  floor plan,  you  are  shown  

one  set  of drawings.  If you  are  an  electrical engineer and want to see how the electricity  distribution 

has been planned,  you will be shown another set of drawings.  And if you are interested in safety and 

firefighting, another set of drawings is used. These drawings are not independent of each  other—they 

are  all about  the same  building.   

A view describes a structure of the system. We will use these two concepts— views and structures—

interchangeably. We will also use the term  architectural view to refer to a view. Many types of views 

have been proposed.  Most of the proposed  views generally belong to one of these three  types 

_ Module 

– Component and connector 

– Allocation 

In a module  view, the  system  is viewed as a collection  of code units,  each implementing some part 

of the system functionality. That is, the main elements in this view are modules. These views are code-

based and do not explicitly rep- resent any runtime structure of the system. Examples  of modules are 

packages, a class,  a procedure,  a method,  a collection  of functions,  and  a collection  of classes. The  

relationships between  these  modules  are also code-based  and  de- pend  on how code of a module  

interacts with  another module 

component and connector  (C&C)  view, the system  is viewed as a col- lection  of runtime entities  

called components. That is, a component  is a unit which has an identity in the  executing  system.  

Objects  (not  classes), a collec- tion  of objects,  and  a process are  examples  of components. While  

executing, components  need to interact with others  to support the system  services. Con- nectors  

provide  means  for this  interaction. Examples  of connectors  are  pipes and  sockets.  Shared  data  

can also act  as a connector.  If the  components  use some middleware  to  communicate and  

coordinate, then  the  middleware  is a connector. 

allocation  view focuses on how the different software units  are allocated to resources like the 

hardware, file systems,  and people. That is, an allocation view specifies the  relationship between 

software elements  and  elements  of the environments in which the software system is executed.  They 

expose structural properties like which  processes  run  on which  processor,  and  how the  system files 

are organized  on a file system. 

An architecture description consists  of views of different types, with  each view exposing some structure of 

the system.  Module views show how the soft- ware is structured as a set of implementation units,  C&C views 

show how the software  is structured as  interacting runtime elements,  and  allocation  views show how 

software relates  to nonsoftware structures. These three  types of view of the same system  form the architecture 

of the system 

Component  and Connector View 

The  C&C architecture view of a system  has two main  elements—components and connectors.  

Components are usually computational elements or data  stores that have  some presence  during  the  system  

execution.  Connectors define the means of interaction between these components. A C&C view of the 



system de- fines the components, and which component is connected  to which and through what  connector.  

A C&C view describes  a runtime  structure of the  system— what  components  exist when  the  system  is 

executing  and  how they  interact during  the execution.  The  C&C structure is essentially  a graph,  with  

compo- nents  as nodes and connectors  as edges. The C&C view is perhaps  the most common view of 

architecture and most box-and-line  drawings  representing architecture attempt to capture this  view. Most  

often  when  people  talk  about  the  architecture, they refer  to the  C&C view. Most architecture description  

languages  also focus on the C&C view. 

5.3.1  Components 

Components are generally  units  of computation or data  stores  in the  system. A component  has  a name,  

which  is generally  chosen  to  represent  the  role of the  component or the  function  it performs.  The  

name  also provides  a unique identity to the component, which is necessary for referencing details  about 

the component in the supporting documents, as a C&C drawing will only show the component names. 

 

 
 

Figure  5.1: Component examples. 

 

A component is of a component type, where the  type represents a generic component, defining the  

general  computation and  the  interfaces  a component of that type must have. Note that though  a component 

has a type, in the C&C architecture view, we have  components  (i.e., actual instances) and  not  types. 

Examples  of these types are clients, servers, filters, etc. Different domains  may have other  generic types 

like controllers,  actuators, and  sensors (for a control system  domain). 

In a diagram  representing a C&C architecture view of a system, it is highly desirable  to  have  a different  

representation for different  component  types,  so the  different types can be identified  visually.  In a box-

and-line  diagram,  often all components are  represented as rectangular boxes.  Such  an  approach will 

require  that types of the  components  are described  separately and  the  reader has  to  read  the  description 

to  figure out  the  types of the  components. It  is much  better to  use a different symbol/notation for each 

different component type. Some  of the  common  symbols  used  for  representing commonly  found 

component types are shown in Figure  5.1. 

To make  sure  that the  meanings  of the different symbols  are  clear  to  the reader,  it is desirable  to 

have a key of the  different symbols to describe  what type of component asymbol represents. 



 
 

Figure  5.2: Connector  examples.  

5.3.2  Connectors 

 

The different components  of a system are likely to interact while the system is in operation to provide the 

services expected of the system. After all, components exist to provide parts  of the services and features of 

the system, and these must be combined to deliver the overall system functionality. For composing a system 

from its  components, information about  the  interaction between  components is necessary. 

 

Architecture  Styles for C&C View 

 

It should be clear that different systems will have different architecture. There are some general  

architectures that have been observed  in many  systems and that seem to represent general  structures that 

are useful for architecture of a class of problems.  These are called architectural styles. A style defines a 

family of architectures that satisfy  the  constraints of that style  [6, 23, 76]. In  this section we discuss some 

common styles for the C&C view which can be useful for a large set of problems  [23, 76]. These styles can 

provide  ideas for creating an architecture view for the  problem  at  hand.  Styles can also be combined  to 

form richer views. 

5.4.1  Pipe and Filter 

Pipe-and-filter style of architecture is well suited for systems that primarily  do data  transformation whereby  

some input data  is received and  the  goal of the system is to produce some output data  by suitably  

transforming the input  data. A system using pipe-and-filter architecture achieves the desired transformation 

by  applying  a network of smaller  transformations and  composing  them  in a manner  such that together 

the overall desired transformation is achieved. 

The  pipe-and-filter style  has only one component  type  called the  filter.  It also  has  only  one  connector  

type, called  the  pipe.  A filter  performs  a  data transformation, and  sends  the  transformed  data   to  other  

filters  for  further processing  using the pipe connector.  In other  words, a filter receives the  data it needs 

from some defined input pipes, performs the data  transformation, and then  sends  the  output data  to  other  

filters  on  the  defined  output pipes.  A filter may have more than  one input  and more than  one output. 

Filters  can be independent  and  asynchronous entities,  and  as they  are  concerned  only with the  data  

arriving  on the  pipe, a filter need not  know the  identity of the  filter that sent the input  data  or the identity 

of the filter that will consume the data they  produce. 

The  pipe  connector is a unidirectional channel  which  conveys  streams of data  received  on one end 

to the  other  end.  A pipe does not  change  the  data in any manner  but  merely transports it to the 

filter on the receiver end in theorder  in which the  data  elements  are received.  As filters can be 

asynchronous and should work without the knowledge of the identity of the producer  or the consumer,  

buffering  and  synchronization needs  to ensure  smooth  functioning of the producer-consumer 



relationship embodied  in connecting two filters by a pipe is ensured  by the pipe. The filters merely 

consume and produce  data 

 

 
Figure  5.6: Pipe-and-filter example. 

Shared-Data Style 
In this  style,  there  are  two types of components—data repositories  and  data accessors.  Components of 

data  repository  type are  where  the  system  stores shared  data—these could be file systems or databases. 

These components  pro- vide a reliable and permanent storage,  take  care of any synchronization needs for 

concurrent access, and  provide  data  access support. Components of data accessors type access data  from 

the  repositories,  perform  computation on the data  obtained, and if they want to share the results with other 

components, put the  results  back in the  depository.  In other  words, the  accessors are computa- tional  

elements  that receive their  data  from the repository  and save their  data in the repository  as well. These 

components  do not directly  communicate with each other—the data  repository  components  are the  means  

of communication and data  transfer  between  them. 

 

 
 

Figure  5.7: Shared  data  example. 

 

Client-Server Style 

Another  very  common  style  used  to  build  systems  today  is the  client-server style. Client-server 

computing  is one of the basic paradigms of distributed com- puting  and this architecture style is built  upon 

this paradigm. 

In this style, there  are  two component types—clients and  servers.  A con- straint of this style is that a 

client can only communicate with the server, and cannot  communicate with  other  clients.  The  

communication between a client component and  a server  component is initiated by the  client when the  

client sends a request  for some service that the  server supports. The  server  receives the request at its 

defined port, performs the service, and then returns the results of the computation to the client who requested  

the service. 

 

Some Other Styles 

 

Publish-Subscribe  Style    In this style, there  are two types of components. One type of component 

subscribes  to a set of defined events. Other  types of compo- nents  generate  or publish  events.  In response  

to these events,  the  components that have  published  their  intent to process the event, are  invoked.  This  

type of style is most  natural in user  interface  frameworks,  where many  events  are defined (like mouse 

click) and components  are assigned to these events.  When that event occurs,  the  associated  component 

is executed.  As is the  case with most connectors,  it is the task of the runtime infrastructure to ensure that 



this type of connector  (i.e., publish-subscribe) is supported. This style can be seen as a special case of the  

blackboard style,  except  that the repository  aspect  is not being used. 

Peer-to-peer style,  or  object-oriented style    If we take  a  client-server  style, and generalize each 

component to be a client as well as a server, then  we have this  style. In this style, components  are peers 

and any component can request a service from any  other  component. The  object-oriented computation 

model represents this  style  well. If we view components  as objects,  and  connectors as method  

invocations, then we have this style.  This  model is the  one that is primarily  supported through middleware  

connectors  like CORBA  or .NET. 

Communicating processes  style    Perhaps the oldest model of distributed com- puting is that of 

communicating processes. This style tries to capture this model of computing. The  components  in this  

model are processes or threads, which communicate with  each other  either  with  message passing  or 

through shared memory.  This  style is used in some form in many  complex systems  which use multiple  

threads or processes. 

5.5  Documenting Architecture Design 

 

So far  we have  focused  on  representing views through diagrams.   While  de- signing, diagrams are indeed 

a good way to explore options and encourage discussion  and  brainstorming between the  architects. But  

when the designing is over,  the  architecture  has  to  be  properly  communicated to  all  stakehold- ers for 

negotiation and agreement. This requires  that architecture be precisely documented with enough 

information to perform the types of analysis the dif- ferent stakeholders wish to make to satisfy themselves  

that their concerns have been adequately addressed.  Without a properly  documented description of the 

architecture, it is not  possible to have a clear common understanding. Hence, properly  documenting an 

architecture is as important as creating  one. In this section, we discuss what  an architecture document 

should contain.  Our discus- sion is based on the recommendations in [6, 23, 54]. 

Just like different  projects  require  different  views,  different  projects  will need  different level of 

detail  in their  architecture documentation. In general, however, a document describing  the architecture 

should contain  the following: 

 

    – System  and architecture contex 

– Description  of architecture views 

– Across views documentation 

 

We know that an architecture for a system is driven by the system objectives and the needs of the 

stakeholders. Hence, the first aspect  that an architecture document should  contain  is identification of 

stakeholders and  their  concerns. This portion  should give an overview of the system, the different 

stakeholders, and the system properties for which the architecture will be evaluated. A con- text  diagram  

that establishes  the  scope of the  system,  its boundaries, the  key actors  that interact with the system,  and 

sources and sinks of data  can also be very useful. A context  diagram  is frequently  represented by showing 

the system in the center,  and showing its connections  with people and systems,  including sources and sinks 

of data. 

Evaluating Architectures 

 

Architecture of a software system impacts  some of the key nonfunctional qual- ity  attributes like 

modifiability,  performance,  reliability, portability, etc.  The architecture has  a much  more  significant 

impact  on some of these  properties than  the design and coding choices. That is, even though  choices of 

algorithms, data  structures, etc.,  are  important for many  of these  attributes, often  they have less of an 

impact  than  the architectural choices. Clearly  then,  evaluating a proposed  architecture for these  properties 

can  have  a beneficial impact  on the  project—any architectural changes  that are  required  to  meet  the  

desired goals for these attributes can be done during  the architecture design itself. 

 

Design Concepts 



The  design of a system  is correct  if a system  built  precisely  according  to the design satisfies the  

requirements of that system.   Clearly,  the  goal during  the design phase is to produce correct  designs. 

However, correctness  is not the sole criterion  during  the  design phase,  as there  can be many  correct  

designs.  The goal of the  design  process  is not  simply  to  produce  a design  for the system. Instead, the  

goal is to find the best possible design within  the  limitations im- posed by the  requirements and  the  

physical  and  social environment  in which the system  will operate. 

A software  system  cannot  be made  modular  by simply  chopping  it  into  a set of modules.  For  

modularity, each module  needs to support a well-defined abstraction and have a clear interface  through 

which it can interact with other modules.  To  produce  modular  designs,  some criteria  must be used  to  

select modules  so that the  modules  support well-defined abstractions and  are  solv- able and modifiable 

separately. Coupling  and cohesion are two modularization criteria,  which are often used together. We also 

discuss the open-closed princi- ple, which is another criterion  for modularity. 

Coupling 

Two modules are considered  independent if one can function  completely  with- out the presence of the 

other.  Obviously,  if two modules are independent, they are solvable  and  modifiable  separately. However, 

all the  modules  in a system cannot  be independent  of each  other,  as they  must  interact so that together 

they produce the desired external  behavior of the system. The more connections between modules, the more 

dependent they are in the sense that more knowl- edge about one module  is required  to understand or solve 

the  other  module. Hence,  the  fewer and  simpler  the  connections  between  modules,  the easier  it is to 

understand one without understanding the other.  The notion  of coupling [79, 88] attempts to capture this  

concept of “how strongly”  different modules are interconnected. 

Coupling between modules is the strength of interconnections between mod- ules or  a  measure  of 

interdependence  among  modules.  In  general,  the  more we must know about  module  A in order  to  

understand module  B, the  more closely connected  A is to  B. “Highly  coupled”  modules  are  joined  by 

strong interconnections, while “loosely coupled” modules have weak interconnections. Independent 

modules have no interconnections. To solve and modify a module separately, we would  like the  module  

to  be loosely coupled  with  other  mod- ules.  The  choice of modules  decides  the  coupling  between  

modules.  Because the modules of the software system  are created  during  system  design, the coupling 

between  modules is largely decided  during  system  design and  cannot  be reduced  during  implementation. 

Coupling  increases  with  the  complexity  and  obscurity  of the  interface  be- tween  modules.  To keep 

coupling  low we would like to  minimize  the  number of interfaces  per module and  the  complexity  of 

each interface.  An interface  of a module is used to pass information to and  from other  modules.  Coupling  

is reduced if only the defined entry interface of a module is used by other modules, for example, passing 

information to and from a module exclusively through pa- rameters. Coupling would increase if a module 

is used by other  modules via an indirect  and  obscure  interface,  like directly  using the  internals of a 

module or using shared  variables. 

Complexity  of the  interface is another factor  affecting coupling.  The  more complex each interface is, the 

higher will be the degree of coupling. For example, complexity of the entry interface of a procedure depends 

on the number of items being passed  as parameters and  on the  complexity  of the  items. 

The  type of information flow along the  interfaces is the  third  major  factor affecting coupling.  There  are 

two kinds of information that can flow along an interface:  data  or control.  Passing  or receiving control 

information means that the action  of the module will depend  on this control information, which makes it 

more difficult to understand the module and provide its abstraction 



 
The  manifestation of coupling  in  OO  systems  is  somewhat   different  as objects  are semantically richer  

than  functions. In OO systems,  three  different types of coupling exist between  modules [30]:– Interaction 

coupling– Component coupling– Inheritance coupling 

Interaction coupling occurs due to methods  of a class invoking methods  of other  classes. In many  ways, 

this  situation is similar  to a function  calling an- other function and hence this coupling is similar to coupling 

between functional modules discussed above. Like with functions, the worst form of coupling here is if 

methods  directly  access internal parts  of other  methods. 

Component  coupling refers to the  interaction between  two classes where a class has variables  of the 

other class. Three clear situations exist as to how this can happen.  A class C can be component coupled 

with  another class C1, if C has an instance variable  of type C1, or C has a method  whose parameter is of 

type C1, or if C has a method  which has a local variable  of type C1. 

Inheritance coupling is due to the inheritance relationship between  classes. Two classes are considered 

inheritance coupled if one class is a direct or indirect subclass  of the  other.  If inheritance adds  coupling,  

one can  ask the  question why not  do away  with  inheritance altogether. The  reason  is that inheritance 

may reduce the overall coupling in the system 

 

Cohesion 

We have seen that coupling is reduced  when the relationships among elements in different modules are 

minimized. That is, coupling is reduced when elements in different modules  have  little  or no bonds  

between them.  Another  way  of achieving  this  effect is to strengthen the bond  between  elements  of the  

same module by maximizing  the relationship between elements  of the same module. Cohesion  is the  

concept  that tries to capture this  intramodule 

Cohesion  of a module  represents how tightly  bound  the internal elements of the  module are to one 

another. Cohesion of a module gives the  designer an idea about whether  the  different elements  of a module 

belong together in the same module. Cohesion and coupling are clearly related.  Usually, the greater  the 

cohesion of each module in the system, the lower the coupling between modules is. This  correlation is not  

perfect, but it has been observed  in practice.  There are several levels of cohesion: 

 

– Coincidental– Logical– Temporal 

– Procedural– Communicational 

– Sequential– Functional 

Coincidental is the lowest level, and functional  is the highest.  Coincidental cohesion  occurs  when  there  

is no meaningful  relationship among  the  elements of a module. 

A module has logical cohesion if there  is some logical relationship between the  elements  of a module,  

and  the elements  perform  functions  that fall in the same logical class. 



Temporal cohesion is the same as logical cohesion, except that the elements are also related  in time and 

are executed  together. 

A procedurally cohesive module contains elements that belong to a common procedural  unit 

A module with communicational cohesion has elements that are related  by a reference to the same input 

or output data 

If we have a sequence of elements  in which the  output of one forms the  input  to another, sequential 

cohesion does not provide any guidelines on how to combine them into modules. Functional cohesion is 

the strongest cohesion. In a functionally  bound mod- ule, all the elements  of the module are related  to 

performing  a single function 

Cohesion in object-oriented systems  has three aspects  [30]: 

– Method  cohesion– Class cohesion– Inheritance cohesion 

Method cohesion is the same as cohesion in functional  modules. It focuses on why the  different code 

elements  of a method  are together within  the  method. The  highest  form of cohesion is if each  method  

implements a clearly  defined function,  and  all statements in the method  contribute to  implementing this 

function. 

Class cohesion focuses on why different attributes and methods  are together in this  class. The  goal is 

to have  a class that implements a single concept  or abstraction with  all elements  contributing toward  

supporting this  concept.  In general, whenever there  are multiple  concepts  encapsulated within  a class, 

the cohesion of the class is not as high as it could be, and a designer should try  to change the design to have 

each class encapsulate a single concept. 

Inheritance cohesion  focuses on the  reason  why  classes are  together in a hierarchy. The  two main  

reasons  for inheritance are  to  model generalization- specialization  relationship, and  for code reuse.  

Cohesion  is considered  high if the  hierarchy   supports  generalization-specialization of some  concept  

(which is likely  to  naturally lead  to  reuse  of some  code).   

 

The Open-Closed Principle 

This  is a design concept  which came  into  existence  more in the  OO context. Like with cohesion and 

coupling, the basic goal here is again to promote  build- ing of systems  that are easily modifiable,  as 

modification  and  change  happen frequently  and  a design that cannot  easily accommodate change will 

result  in systems that will die fast and will not be able to easily adapt to the changing world. 

The  basic  principle,  as  stated by  Bertrand Meyer,  is  “Software  entities should be open for extension,  

but closed for modification”[66]. A module being “open for extension”  means that its behavior  can be 

extended  to accommodate new demands  placed  on this  module due to changes  in requirements and  sys- 

tem functionality. The module being “closed for modification”  means that the existing source code of the 

module is not changed when making enhancements. 

Then  how  does  one  make  enhancements to  a  module  without  changing the  existing  source  code?  

This  principle  restricts the  changes  to  modules  to extension  only, i.e. it allows addition of code, but 

disallows changing of existing code. If this can be done, clearly, the value is tremendous. Code changes 

involve heavy  risk  and  to  ensure  that a  change  has  not  “broken”   things  that were working often 

requires  a lot of regression  testing.  This  risk can be minimized if no changes  are  made  to  existing  code.  

But  if changes  are  not  made, how  will enhancements be made?  This principle  says that enhancements 

should be made by adding  new code, rather than  altering  old code. 

This principle  can be satisfied in OO designs by properly  using inheritance and polymorphism. 

Inheritance allows creating  new classes that will extend  the behavior  of existing  classes without changing  

the  original  class. And it is this property that can be used to support this  principle.  As an example,  consider 

an application in which a client object (of type Client) interacts with a printer object (of class Printer1) and 



invokes the necessary methods  for completing  its printing needs. The class diagram  for this will be as 

shown in Figure  6.1. 

 

Figure  6.1: Example  without using subtyping. 

In this  design,  the  client  directly  calls the  methods  on the  printer object for printing something.  Now 

suppose  the  system  has to be enhanced  to allow another printer to be used by the  client. Under  this  

design, to implement this change, a new class Printer2 will have to be created  and the code of the client 

class will have  to be changed  to  allow using  object  of Printer2 type  as well. This  design  does not  

support the  open-closed  principle  as the  Client  class is not closed against  change. 

Function-Oriented  Design 

Creating the software system  design is the major  concern of the design phase. Many  design  techniques  

have  been  proposed  over  the  years  to  provide  some discipline  in handling  the  complexity  of designing  

large  systems.  The  aim  of design  methodologies is not  to  reduce  the  process of design  to  a sequence  

of mechanical  steps but to provide guidelines to aid the designer during the design process. We discuss the 

structured design methodology  [79, 88] for developing function-oriented system designs. The methodology 

employs the structure chart notation for creating  the  design.  So before  we discuss  the  methodology,  we 

describe this notation 

Structure Charts 

Graphical design  notations are  frequently  used  during  the  design  process  to represent design  or design  

decisions,  so the  design  can  be communicated to stakeholders in a succinct manner and evaluated. For a 

function-oriented design, the design can be represented graphically  by structure charts. 

The  structure of a program  is made  up  of the  modules  of that program together with the interconnections 

between modules. Every computer  program has  a  structure, and  given  a  program  its  structure can  be  

determined. The structure chart  of a program  is a graphic  representation of its  structure. In a  structure 

chart a  module  is represented by  a  box  with  the module  name written in  the box.  An  arrow  from  

module  A to  module  B  represents that module A invokes module B. B is called the  subordinate of A, and  

A is called the  super ordinate of B.  The  arrow  is labeled  by  the  parameters  received  by B as input and  

the  parameters returned by  B as output, with  the  direction of flow of the  input  and  output parameters 

represented by small arrows.  The parameters can be shown to be data  (unfilled circle at  the tail  of the 

label) or control  (filled circle at  the  tail).  As an example,  consider  the structure of the following,  

 

Figure  6.3: The structure chart of the sort program. 



In general,  procedural information is not  represented in a structure chart, and  the  focus is on 

representing the  hierarchy  of modules.  However, there  are situations where  the  designer  may  wish  to  

communicate certain  procedural information explicitly, like major loops and decisions. Such information 

can also be represented in a structure chart.  For  example,  let  us consider  a situation where  module  A 

has  subordinates B,  C,  and  D,  and  A repeatedly calls the modules  C  and  D.  This  can  be  represented 

by  a  looping  arrow  around  the arrows joining the subordinates C and D to A, as shown in Figure 6.4.  All 

the subordinate modules activated within  a common loop are enclosed in the same looping arrow. 

Major decisions can be represented similarly. For example, if the invocation of modules  C and  D in module  A 

depends  on the  outcome  of some decision, that is represented by a small diamond in the box for A, with the 

arrows joining C and D coming out of this diamond,  as shown in Figure  6.4. 

 

 

Figure  6.4: Iteration and decision representation. 

Structured  Design Methodology 

No design methodology  reduces design to a series of steps that can be mechanically executed.  All design 

methodologies  are, at  best, a set of guidelines that, if applied,  will most likely produce  a design that is 

modular  and simple. 

The basic principle behind the structured design methodology,  as with most other  methodologies,  is problem  

partitioning. Structured design methodology partitions the  system  at  the  very  top  level into  various  

subsystems, one for managing  each major input,  one for managing  each major output, and one for each major  

transformation. The  modules  performing  the  transformation  deal with data  at an abstract level, and hence can 

focus on the conceptual  problem of how to  perform  the  transformation without bothering with  how to  obtain 

clean inputs  or how to present the output. 

The actual  transfor- mation  in the  system  is frequently  not  very complex—it  is dealing  with  data 

and  getting  it in proper  form for performing  the  transformation or producing the output in the desired 

form that requires  considerable  processing. 

This partitioning is at the heart of the structured design methodology. There are four major  steps in the 

methodology: 

1.  Restate the problem  as a data  flow diagram 

2.  Identify the input and output data  elements 

3.  First-level  factoring 

4.  Factoring of input,  output, and transform branches 



Restate  the Problem  as a Data  Flow Diagram     To use this  methodology,  the first  step  is to  construct  

the data  flow diagram  for the  problem.  We studied data  flow diagrams  in Chapter 3. However,  there  is 

a fundamental difference between the DFDs drawn during requirements analysis and those drawn during 

structured design. In the requirements analysis,  a DFD is drawn  to model the problem domain. The analyst  

has little control over the problem,  and hence his task  is to extract from the problem  all the  information 

and  then  represent  it as a DFD. 

 
Figure  6.5: Data  flow diagram  of an ATM. 

First-Level  Factoring   Having identified  the central  transforms and the most abstract input  and  output 

data  items,  we are ready  to identify  some modules for the system.  We first specify a main module, whose 

purpose  is to invoke the subordinates. The  main  module is therefore  a coordinate module.  For  each of 

the  most  abstract input data  items,  an immediate subordinate module to the main  module  is specified. 

 

 
Figure  6.6: First-level  factoring  for ATM 

Factoring the Input,  Output,  and Transform Branches   The first-level factor- ing results  in a very high 

level structure, where each subordinate module has a lot of processing to do. To simplify these  modules,  

they  must  be factored  into subordinate modules  that will distribute the  work  of a module.  Each  of the 

input, output, and  transformation modules  must  be considered  for factoring. 

 

Object-Oriented  Design 

Object-oriented (OO)  approaches for software development have  become  ex- tremely popular  in recent  

years.  Much  of the  new development  is now being done  using  OO  techniques  and  languages.  There  

are  many  advantages that OO systems offer. An OO model closely represents the problem  domain,  which 

makes  it  easier  to  produce  and  understand designs.  As requirements change, the  objects  in a system  

are less immune  to these changes,  thereby  permitting changes  more easily. Inheritance and  close 

association  of objects  in design to problem  domain  entities  encourage  more re-use, i.e., new applications 

can use existing modules more effectively, thereby  reducing development cost and cycle time.  Object-



oriented approaches are believed to be more natural and provide richer  structures for thinking  and  

abstraction. 

OO  Concepts 

Here we very briefly discuss the main concepts behind object-orientation. Readers familiar  with an OO 

language  will be familiar  with these concepts. 

Classes  and  Objects    Classes and  objects  are the  basic building  blocks of an OO  design,  just  like  

functions  (and  procedures) are  for  a  function-oriented design.  Objects  are  entities  that encapsulate 

some state  and  provide  services to  be  used  by  a  client, which  could  be  another object,  program,  or  

a  user. 

A major advantage of encapsulation is that access to the encapsulated data is limited to the operations  

defined on the data.  Hence, it becomes much easier to ensure that the  integrity of data  is preserved,  

something  very hard  to do if any  program  from outside  can  directly  manipulate the  data  structures of 

an object. Encapsulation and  separation of the  interface  and  its implementation, also allows the  

implementation to be changed  without affecting the  clients  as long as the interface  is preserved. 

Objects  represent the basic runtime entities  in an OO system; they  occupy space in memory  that keeps its 

state  and is operated on by the defined opera- tions on the object. A class, on the other hand,  defines a 

possible set of objects. We have seen that objects have some attributes, whose values constitute much of the 

state  of an object. What  attributes an object has are defined by the class of the  object.  Similarly,  the  

operations allowed on an object  or the  services it provides, are defined by the class of the object 

The  relationship between  a class and objects  of that class is similar to the relationship between a type 

and elements  of that type. A class represents a set of objects that share a common structure and a common 

behavior,  whereas an object  is an instance  of a class. 

Inheritance and Polymorphism     Inheritance is a relation  between classes that allows for definition  and  

implementation of one class based  on the  definition of existing  classes  [62]. When  a  class  B inherits  

from  another class  A,  B is referred  to  as  the  subclass  or  the  derived  class  and  A  is referred  to  as  

the superclass  or the  base class.     In general,  a subclass  B will have  two parts:  a derived part  and an 

incremental part 

 

Unified Modeling Language (UML) 

UML is a graphical  notation for expressing  object-oriented designs  [35]. It  is called a modeling language  

and not a design notation as it allows representing various  aspects  of the system,  not just the design that 

has to be implemented. For an OO design, a specification  of the classes that exist in the system might 

suffice. However, while modeling,  during  the  design process, the  designer  also tries to understand how 

the different classes are related  and how they  interact to provide the desired functionality. This aspect of 

modeling helps build designs that are more likely to satisfy the requirements of the system. 

Class Diagram     The class diagram  of UML is the central piece in a design or model. As the name suggests, 

these diagrams  describe the classes that are there in the design. As the final code of an OO implementation 

is mostly classes, these diagrams  have  a very  close relationship with  the  final code. There  are  many 

tools that translate the class diagrams to code skeletons, thereby  avoiding errors that might get introduced 

if the class diagrams  are manually  translated to class definitions  by programmers. A class diagram  defines 

1.  Classes that  exist in the system—besides  the class name, the diagrams  are capable of describing the 

key fields as well as the important methods  of the classes. 

2.  Associations between classes—what types of associations  exist between dif- ferent classes. 

3.  Subtype, supertype relationship—classes may also form subtypes  giving type hierarchies  using  

polymorphism. The  class diagrams  can  represent these hierarchies  also. 



A class itself is represented as a rectangular box which is divided into three areas. The top part  gives the 

class name. By convention  the class name is a word with the first letter  in uppercase.   

 

 

Figure  6.12: Class, stereotypes, and tagged  values. 

The generalization-specialization relationship is specified by having  arrows coming  from  the  subclass  to  

the  superclass,  with  the  empty triangle-shaped arrowhead touching  the  superclass.  Often,  when there  

are multiple  subclasses of a class, this  may  be specified by having  one arrowhead on the  superclass, and  

then  drawing  lines from this  to the  different subclasses.   

 

 

Figure  6.14: Aggregation  and association  among class 

 

 

Figure  6.15: Sequence diagram  for printing a graduation report. 



 

Figure  6.16: Collaboration diagram  for printing a graduation report 

 

 

 

Figure  6.17: Subsystems, Components, and package 

 

 

Detailed Design 

In the previous  two sections  we discussed  two different approaches for system design—one based on 

functional  abstraction and one based on objects.  In sys- tem design we concentrate on the  modules in a 

system and  how they  interact with each other.  Once the modules are identified and specified during the 

high- level design, the internal logic that will implement the given specifications  can be designed, and is 

the focus of this section. 

Logic/Algorithm Design 

The basic goal in detailed  design is to specify the logic for the different modules that have been specified 

during  system design. Specifying the logic will require developing  an algorithm  that will implement the 

given specifications.  Here we consider some principles  for designing algorithms or logic that will 

implement the given specifications. 

The  term  algorithm  is quite  general  and  is applicable  to a wide variety of areas. For software we can 

consider an algorithm to be an unambiguous proce- dure for solving a problem   

State Modeling of Classes 



For  object-oriented design,  the  approach just  discussed  for obtaining  the  de- tailed design can be used 

for designing the logic of methods.  But a class is not a functional  abstraction and cannot  be viewed as 

merely a collection of functions (methods). 

The  technique  for getting a more detailed  understanding of the  class as a whole, without talking  about 

the logic of different methods,  has to be different from the  refinement-based approach. An object  of a class 

has some state  and many  operations  on it. To better understand a class, the relationship between the state 

and various  operations and the effect of interaction of various  opera- tions have to be understood 

 

 

Figure  6.23: FSA model of a stack. 

The  finite  state modeling  of objects  is an  aid  to  understand the effect of various  operations  defined 

on the  class on the  state of the  object. A good un- derstanding of this can aid in developing the logic for 

each of the operations. To develop the  logic of operations, regular  approaches for algorithm  development 

can be used. The model can also be used to validate  if the logic for an operation is correct.  As we will see 

later,  a state  model can be used for generating test cases for validation. 

Verification 

The output of the design activity should be verified before proceeding with the activities  of the next  phase.  

If the design is expressed  in some formal notation for which  analysis  tools  are  available,  then through 

tools  it  can  be  checked for internal consistency  (e.g., those  modules  used by another are defined, the 

interface of a module  is consistent with  the  way others  use it, data  usage  is consistent with  declaration, 

etc.)  If the  design  is not  specified  in  a  formal, executable  language,  it  cannot  be processed  through 

tools,  and  other  means for verification  have to be used. 

WHAT IS THE DIFFERENCE BETWEEN VERIFICATION AND VALIDATION PROCESS. 

Verification Validation 

Verification is the process to find whether the software meets the 
specified requirements for particular phase. 

The validation process is checked whether the software 
meets requirements and expectation of the customer. 

It estimates an intermediate product. It estimates the final product. 

The objectives of verification is to check whether software is 
constructed according to requirement and design specification. 

The objectives of the validation is to check whether the 
specifications are correct and satisfy the business need. 

It describes whether the outputs are as per the inputs or not. It explains whether they are accepted by the user or not. 

Verification is done before the validation. It is done after the verification. 

Plans, requirement, specification, code are evaluated during the 
verifications. 

Actual product or software is tested under validation. 

It manually checks the files and document. 
It is a computer software or developed program based 
checking of files and document. 

 

Metrics 



Here we discuss some of the  metrics  that can be extracted from a design and that could be useful for 

evaluating the design. We do not discuss the standard metrics of effort or defect that are collected (as per 

the project plan) for project monitoring. 

Size is always  a product metric  of interest. For  size of a design,  the  total number of modules is a 

commonly  used metric. (By using an average  size of a module, from this metric the final size in LOC can 

be estimated and compared with project estimates.) 

Another  metric  of interest is complexity.  A possible use of complexity  met- rics at  design time  is to 

improve  the  design by reducing  the  complexity  of the modules that have been found to be most complex. 

This will directly  improve the testability and maintainability. 

Complexity Metrics for  Function-Oriented Design 

Network Metrics   Network metrics is a complexity  metric that tries to capture how “good”  the  structure 

chart  is. As coupling  of a module  increases  if it  is called  by more modules,  a good structure is considered  

one that has  exactly one caller. That is, the call graph  structure is simplest  if it is a pure tree.  The more 

the structure chart  deviates  from a tree,  the  more complex the  system. Deviation  of the  tree is then 

defined as the graph impurity  of the  design [87]. Graph  impurity can be defined as 

Graph impurity = n − e − 1 

The  module  design complexity,  Dc , is defined as 

Dc  = size ∗ (inf low ∗ outf low)
2 

. 

The term (inf low ∗outf low) refers to the total  number of combinations of input source  and  

output destination. This  term  is squared,  as the  interconnection between the  modules is 

considered  a more important factor (compared  to the 

internal complexity)  determining the  complexity  of a module 

The module size is considered  an  insignificant factor,  and  complexity Dc   for a module  is defined as 

Dc  = f an  in ∗ f an  out + inf low ∗ outf low 

where  fan in  represents  the  number   of modules  that call  this  module  and fan out is the number  of 

modules this module calls. 

 

 

Testing 

Testing Concepts 

In this  section  we will first define some of the terms  that are commonly  used when discussing testing. 

Then we will discuss some basic issues relating  to how testing  is performed,  and the importance of 

psychology of the tester. 

Error, Fault, and Failure 

While  discussing  testing  we commonly  use terms  like error, fault,  failure  etc. Let us start by defining 

these concepts   

The  term  error  is used in two different ways. It  refers to  the  discrepancy between a computed, observed,  

or measured  value  and  the  true, specified, or theoretically correct value.  That is, error  refers to the  

difference between  the actual  output of a software and the correct output. 

Fault  is a condition  that causes a system  to fail in performing  its required function.  A fault is the basic 

reason for software malfunction and is practically synonymous  with the commonly used term  bug, or the 

somewhat  more general term  defect.  The  term  error  is also  often  used  to  refer  to defects 



Failure   is the  inability  of a  system  or  component to  perform  a  required function according to its 

specifications. 

Test Case, Test Suite, and Test Harness 

So far we have used the  terms  test  case or set of test  cases informally.  Let us define them more precisely.  

A test  case (often  called a test)  can be considered as comprising a set of test inputs  and execution  conditions,  

which are designed to  exercise  the  SUT  in a particular manner   

A group  of related  test cases that are generally executed together to test  some specific behavior  or aspect 

of the SUT is often referred  to as a test suite. 

Psychology of Testing 

As mentioned, in testing,  the  software  under  test (SUT)  is executed  with  a set of test  cases.  As discussed,  

devising a set of test cases that will guarantee that all errors  will be detected is not  feasible. Moreover,  there  

are no formal or precise methods  for selecting test  cases. 

Levels of Testing 

Testing  is usually relied upon to detect the faults remaining  from earlier stages, in addition to the faults  

introduced during  coding itself. Due to this,  different  levels of testing  are  used  in the  testing  process; 

each  level of testing  aims to test different aspects of the system. 

The  basic  levels are  unit  testing, integration testing,  system  testing,  and acceptance testing.  These 

different levels of testing  attempt to detect  different types  of faults.  The  relation  of the  faults  introduced  

in different  phases,  and the different levels of testing  are shown in Figure  8.1. 

The  first  level of testing  is called  unit  testing,  which  we discussed  in the previous chapter. Unit 

testing is essentially for verification of the code produced by individual  programmers, and  is typically done  

by the  programmer of the module.  Generally,  a module  is offered by a programmer for integration and 

use by others  only after  it has been unit  tested  satisfactorily. 

The next level of testing is often called integration testing.  In this, many unit tested  modules are combined 

into subsystems, which are then  tested.  The goal here is to see if the modules can be integrated properly.  

Hence, the emphasis on testing  interfaces  between  modules. This testing  activity can be considered testing  

the design. 

 

Figure  8.1: Levels of testing. 



The  next levels are system  testing  and  acceptance testing.  Here the  entire software  system  is tested.      

The  reference  document for this  process  is the requirements document, and the goal is to see if the software 

meets its require- ments.  This  is often  a large exercise, which for large projects  may  last  many weeks or 

months.  This  is essentially  a validation exercise, and  in many  situa- tions  it  is the only validation activity. 

Acceptance  testing  is often  performed with  realistic  data  of the  client  to  demonstrate that the  software  

is working satisfactorily. It may  be done in the  setting  in which the software  is to even- tually  function.  

Acceptance  testing  essentially  tests  if the system satisfactorily solves the problems  for which it was 

commissioned. 

regression testing,  some test  cases that have been executed  on the  old system are  maintained, along  

with  the  output produced  by  the  old  system. These  test cases  are  executed  again  on  the  modified  

system  and  its  output compared  with  the  earlier  output to make sure that the  system  is working as 

before on these  test cases. This frequently  is a major  task  when modifications are to be made to existing  

systems. 

Complete regression testing  of large systems can take a considerable amount of time,  even if automation is 

used.  If a small change  is made  to the  system, often practical considerations require that the entire test suite 

not be executed, but  regression  testing  be done with  only a subset of test  cases. 

Testing Process 

The basic goal of the software development process is to produce software that has  no errors  or very  few 

errors.  Testing  is a quality  control  activity which focuses on identifying  defects  (which  are  then  removed).  

We  have  seen that different levels of testing  are needed  to detect the defects  injected during  the various  

tasks in the project. And at a level multiple  SUTs may be tested. 

Test Plan 

In  general,  in a project,  testing  commences  with  a test  plan  and  terminates with  successful execution  of 

acceptance testing.  A test  plan is a general docu- ment for the  entire  project  that defines the  scope, approach 

to be taken,  and the  schedule  of testing,  as well as identifies  the  test items  for testing  and  the personnel  

responsible  for the  different  activities  of testing.  The  test  planning can be done well before the actual  

testing  commences and can be done in par- allel  with  the  coding  and  design  activities. The  inputs  for 

forming  the  test plan are: (1) project  plan,  (2) requirements document, and (3) architecture. A test plan  

should  contain the following: 

– Test unit  specification 

– Features to be tested 

– Approach  for testing 

– Test deliverables 

– Schedule and task  allocation 

As seen earlier, different levels of testing  have to be performed  in a project. The  levels are  specified in the  

test  plan  by identifying  the  test  units  for the project.  A test  unit  is a set of one or more modules that form 

a software under test (SUT). 

Test Case Design 

The  test  plan  focuses on how the  testing  for the  project  will proceed,  which units will be tested,  and 

what approaches (and tools) are to be used during the various  stages  of testing.  However, it does not  deal 

with  the  details of testing a unit,  nor does it specify which test cases are to be used. 

Test case  design  has  to  be  done  separately for each  unit. Based  on  the approach specified in the test plan, 

and the features  to be tested,  the test cases are  designed  and  specified for testing  the  unit.  Test case 

specification  gives, for each  unit  to  be tested, all test  cases, inputs  to be used  in the  test  cases, conditions  

being tested  by the  test  case, and  outputs expected  for those test cases. 



Test Case Execution 

With  the  specification  of test  cases, the  next  step in the  testing  process is to execute them.  This step is 

also not straightforward. The test case specifications only specify the set of test cases for the unit  to be tested. 

However, executing the test cases may require construction of driver modules or stubs.  It may also require  

modules to set up the  environment as stated in the  test plan  and  test case specifications. 

Black-Box Testing 

As we have seen, good test case design is the key to suitable  testing of the SUT. The  goal while testing  a 

SUT  is to detect most (hopefully  all) of the  defects, through as small  a set  of test cases as possible.  Due  

to  this  basic  goal, it  is important to select test  cases carefully—best are those  test  cases that have a high  

probability of detecting  a defect,  if it  exists,  and  also whose execution will give a confidence that no 

failures during  testing  implies that there  are few (hopefully  none) defects in the software. 

There  are  two  basic  approaches to designing  the  test  cases to  be used  in testing:   black-box  and  white-

box.  In  black-box  testing   the structure of the program  is not  considered.  Test cases are  decided  solely 

on the  basis  of the requirements or specifications  of the  program  or module,  and  the  internals of the 

module or the program  are not considered for selection of test  cases. In this section, we will present some 

techniques  for generating  test  cases for black-box testing.  White-box testing  is discussed in the next section 

 

Equivalence Class Partitioning 

Because we cannot  do exhaustive testing,  the next natural approach is to divide the input domain into a set 

of equivalence classes, so that if the program  works correctly for a value, then  it will work correctly  for 

all the other  values in that class. If we can indeed identify  such classes, then testing  the program  with one 

value from each equivalence  class is equivalent  to doing an exhaustive test of the program. 

Equivalence  classes are usually formed by considering  each condition  speci- fied on an input as specifying 

a valid equivalence class and one or more invalid equivalence  classes. For example,  if an input  condition  

specifies a range of val- ues (say, 0 < count < Max), then form a valid equivalence class with that range and 

two invalid  equivalence  classes, one with values less than  the lower bound of the range (i.e., count < 0) and 

the other  with values higher than  the higher bound  (count > Max). 

Once equivalence  classes are selected for each of the  inputs,  then  the  issue is to select test cases suitably. 

There  are different ways to select the test cases. One  strategy is to  select each  test case  covering  as  many  

valid  equivalence classes as it can, and  one separate test case for each invalid  equivalence  class. 

Boundary Value Analysis 

It  has been observed  that programs  that work correctly  for a set of values  in an equivalence  class fail 

on some special values.  These  values  often lie on the boundary of the equivalence class. Test cases that 

have values on the boundaries of equivalence  classes  are  therefore  likely  to  be  “high-yield”  test  cases,  

and selecting  such  test  cases is the  aim  of boundary value  analysis.  v In the first strategy, we select the 

different boundary values for one variable, and keep the other variables  at some nominal value. And we 

select one test case consisting of nominal values of all the variables.  In this case, we will have 6n + 1 test 

cases. For  two  variables  X  and  Y , the  13 test  cases will be as shown in Figure  8.4. 



 

Figure  8.4: Test  cases for boundary value analysis. 

Pairwise Testing 

There are generally many parameters that determine the behavior of a software system. These  parameters 

could  be  direct input to the  software  or  implicit settings like those for devices. These parameters can take  

different values, and for some of them  the  software may not  work correctly. 

 
Pairwise  testing  is a practical way of testing  large  software  systems  that have many different 

parameters with distinct functioning expected for different values. An example would be a billing system 

(for telephone,  hotel, airline, etc.) which has  different rates  for different parameter values.  It  is also a 

practical approach for testing  general-purpose software  products  that are  expected  to run  on different 

platforms  and  configurations, or a system  that is expected  to work with different types of systems. 

Special Cases 

It has been seen that programs  often produce  incorrect behavior  when inputs form some special cases. The 

reason is that in programs,  some combinations of inputs  need special treatment, and providing  proper  

handling  for these special cases is easily overlooked.  For  example,  in an arithmetic routine,  if there  is a 

division and the divisor is zero, some special action has to be taken, which could easily be forgotten  by the  

programmer. These  special cases form particularly good test cases, which can reveal  errors  that will usually  

not  be detected by other  test  cases. 

State-Based Testing 

There are some systems that are essentially stateless  in that for the same inputs they  always give the  same 

outputs or exhibit  the  same behavior.  Many  batch processing systems,  computational systems, and servers 

fall in this category.  In hardware, combinatorial circuits  fall in this  category.  At a smaller  level, most 

functions  are  supposed  to  behave  in this  manner.  There  are,  however,  many systems whose behavior  is 

state-based in that for identical inputs  they  behave differently  at  different  times  and  may  produce  different  

outputs. The  reason for different behavior  is that the state  of the system  may be different.A state  model for 

a system  has four components: 

– States.  Represent the impact  of the past  inputs  to the system. 



– Transitions. Represent how the  state of the  system  changes  from one state to another in response to 

some events. 

– Events.  Inputs  to the system. 

– Actions.  The outputs for the events. 

The  state model shows what  state  transitions occur and  what  actions  are performed  in a system in 

response to events.  When a state  model is built  from the  requirements of a system,  we can only include 

the  states, transitions, and actions  that are  stated in the requirements or can  be inferred  from them.  If 

more information is available  from the design specifications,  then a richer state model can be built. 

White-Box Testing 

In the previous section we discussed black-box testing,  which is concerned with the  function  that the  

tested  program  is supposed  to  perform  and  does  not deal with the internal structure of the program  

responsible  for actually  imple- menting that function.  Thus,  black-box testing  is concerned  with 

functionality rather than  implementation of the  program To test  the structure of a program,  structural 

testing  aims to achieve test cases that will force the desired coverage of different structures. Various criteria 

have  been proposed  for this.  Unlike the  criteria  for functional  testing,  which are frequently  imprecise,  

the  criteria  for structural testing  are generally  quite precise as they are based on program  structures, which 

are formal and precise. Here  we will discuss  one  approach to  structural testing:   control  flow-based 

testing,  which is most commonly  used in practice.  Control Flow-Based Criteria 

Most  common  structure-based criteria  are  based  on  the  control  flow of the program.  In these  criteria,  

the  control  flow graph  of a program  is considered and  coverage  of various  aspects  of the  graph  are  

specified as criteria.  Hence, before we consider the  criteria,  let us precisely define a control  flow graph  

for a program. 

Let the  control  flow graph (or simply flow graph)  of a program  P be G. A node  in this  graph  represents 

a block of statements that is always  executed together, i.e.,  whenever  the  first  statement is executed,  all 

other  statements are also executed.  An edge (i, j) (from node i to node j) represents a possible transfer of 

control after  executing  the  last statement of the block represented by node  i to  the  first statement of the  

block represented by node  j. A node corresponding  to a block whose first statement is the  start statement 

of P  is called  the  start  node  of G,  and  a node  corresponding  to a block whose last statement is an  exit  

statement is called  an  exit node  [73]. A path  is a finite sequence of nodes (n1 , n2 , ..., nk ), k > 1, such 

that there  is an edge (ni , ni+1 ) for all nodes ni in the sequence (except  the last node nk ). A complete path 

is a path  whose first node is the start node and the last node is an exit node. 

A more general  coverage  criterion  is branch  coverage,  which requires  that each edge in the  control flow 

graph  be traversed at  least  once during  testing. In other  words, branch  coverage requires  that each decision 

in the program  be evaluated to true  and  false values  at  least  once during  testing.  Testing  based on branch  

coverage is often called branch  testing.    

The trouble  with branch  coverage comes if a decision has many  conditions in it (consisting  of a Boolean 

expression  with  Boolean operators and and  or). In such situations, a decision can evaluate  to true  and  

false without actually exercising all the conditions.  For example, consider the following function that checks 

the  validity  of a data  item.  The  data  item  is valid  if it lies between  0 and 100. 

int check(x) 

int x; 

{ 

if ((x >= ) && (x <= 200)) 

check = True; 



else check = False; 

} 

As  the path  coverage  criterion   leads  to  a  potentially infinite  number  of paths,   some  efforts  have  

been  made  to suggest criteria  between  the  branch coverage  and  path  coverage.  The  basic aim of these  

approaches is to select  a set of paths  that ensure branch coverage criterion  and try some other paths  that 

may help reveal errors. One method  to limit the number  of paths  is to consider two  paths  the  same if 

they  differ only in their  subpaths that are  caused  due to the loops. Even with this restriction, the number  

of paths  can be extremely large. 

Test Case Generation and Tool Support 

Once a coverage criterion  is decided, two problems have to be solved to use the chosen criterion  for testing.  

The first is to decide if a set of test cases satisfy the criterion,  and the second is to generate  a set of test 

cases for a given criterion. Deciding whether  a set of test  cases satisfy  a criterion  without the  aid of any 

tools is a cumbersome  task,  though  it is theoretically possible to do manually. For  almost all the  structural 

testing  techniques, tools  are  used  to  determine whether  the  criterion  has  been  satisfied.  Generally,  

these  tools will provide feedback regarding  what  needs to be tested to fully satisfy the criterion. 

There are many tools available for statement and branch  coverage, the crite- ria that are used most often. 

Both  commercial  and freeware tools are available for different source languages.  These tools often also 

give higher-level coverage data  like function coverage,  method  coverage,  and  class coverage.  To get the 

coverage  data,  the  execution  of the  program  during  testing has  to  be closely monitored. This  requires  

that the  program  be instrumented so that required data  can be collected.  A common  method  of 

instrumenting is to  insert  SOME statements called  probes  in  the program.  The  sole purpose  of the  

probes  is to generate  data  about program  execution  during  testing  that can be used to compute  the  

coverage.  With  this, we can  identify  three  phases  in generating coverage data: 

1.  Instrument the program  with probes 

2.  Execute  the program  with test  cases 

3.  Analyze the results  of the probe data 

Probe  insertion  can be done automatically by a preprocessor. The execution  of the program  is done by 

the tester.  After testing,  the coverage data  is displayed by the tool—sometimes  graphical  representations 

are also shown. 

Metrics 

We have seen that during testing  the software under test is executed  with a set of test cases. As the quality  

of delivered software depends  substantially on the quality  of testing, a few natural questions  arise while 

testing: 

– How good is the testing that has been done? 

– What  is the quality  or reliability  of software  after  testing  is completed? During  testing,  the  primary  

purpose  of metrics  is to try to answer  these  and 

other related  questions.  We will discuss some metrics that may be used for this purpose. 

Coverage Analysis 

One of the  most  commonly  used approaches for evaluating the  thoroughness of testing  is to use some 

coverage measures.  We have discussed  above some of the common coverage measures  that are used in 

practice—statement coverage and branch  coverage. To use these coverage measures for evaluating the 

quality of testing,  proper  coverage analysis  tools will have to be employed  which can inform not  only 

the coverage achieved  during  testing  but also which portions are not yet covered. 

Reliability 

After  testing  is done  and  the  software is delivered,  the development is con- sidered  over.  It will clearly  

be  desirable  to  know,  in quantifiable terms,  the reliability of the  software being  delivered.  As reliability  

of software  depends considerably  on the quality  of testing,  by assessing reliability  we can also judge the 



quality  of testing.  Alternatively, reliability  estimation can be used to decide whether  enough  testing  has 

been done. In other  words, besides characterizing an important quality  property of the product being 

delivered,  reliability esti- mation  has a direct role in project management—it can be used by the project 

manager  to  decide  whether  enough  testing has  been  done  and  when  to  stop testing. 

Defect Removal Efficiency 

Another  analysis of interest is defect removal efficiency, though  this can only be determined sometime  

after the software has been released. The purpose  of this analysis  is to evaluate  the effectiveness of the  

testing  process being employed, not  the quality  of testing  for a project. This  analysis  is useful for 

improving the testing  process in the future. 

Usually,  after  the  software has  been  released  to  the  client, the  client will find defects, which have to be 

fixed (generally  by the original developer, as this is often part of the contract). This defect data  is also 

generally logged 

 

 

 

 

 


